Transcriptomics reveal genes involved in
bioluminescence and vision in marine
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shrimp, Benthesicymus bartletti. Other dendrobranchiate shrimp, (E=2-56) UV-sensitive

such as Sergestes similis, have been discovered to possess only one Figure 1. Phylogenetic tree of Oplophoridae, pelagic deep sea shrimps which
visual pigment with a peak sensitivity in the blue-green light excrete a bioluminescent spew.  Some oplophorids additionally possess [l EE a——— e
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Unfortunately, the study of bioluminescence and visual (46-72) MWS MWS MWS/SWS2

structures in the marine environment, particularly the deep sea,
has been challenging due to the perils of collecting and observing live organisms. And although
behavioral and physiological studies on the detection of the emitted light have been conducted,
characterization of the genes involved in detection has not yet been examined. The advent of novel
molecular techniques applied to transcriptomics allow us to study the evolution of bioluminescence at
a genetic level and may provide insight into the genes involved in the detection of light. Proteins in the
opsin family regulate the phototransduction pathway, the pathway in which a light signal from the
environment is converted into an electrical signal in photoreceptor cells (Rivera et al., 2010). Two major
opsin clades are the r- and c-opsins that, along with their associated pathway proteins, are typically
separated into rhabdomeric or ciliary
photoreceptors, which differ in
morphology. Here, we take a
transcriptomic approach to identify
and/or verify genes expressed in the
visual system that may play a role in
detecting bioluminescence. In this
current study, we focus on r- and c-
opsin type genes. We hypothesize
that two separate opsins may be
responsible for blue-green and UV
light detection, which we will
investigate using transcriptomic
analysis.

The r- and c-opsin genes were found in all three shrimp species (Figure 4). Utilizing GenBank BLAST,
similarity searches from other species revealed genes comparable to MWS, SWS2, and SWS1 eye
pigments (Table 1).
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Figure 4. This Venn diagram shows

all of the eye genes that were hit

upon for the three species in question.
Each gene has been categorized by
functional gene set and is color-coded
appropriately. The genes that we focused
on (c- and r-opsin) are highlighted yellow.
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Figure 2. This photograph shows an oplophorid shrimp,
Acanthephyra purpurea, utilizing a bioluminescent spew to
distract or blind a viperfish, Chauliodu danae.

Methods

 RNA was extracted from the eyes of 3 shrimp species (Benthesicymus bartletti, Systellaspis
debilis, and Oplophorus gracilirostris) using a NucleoSpin RNA kit.

Conclusions/Future Studies

* We found two copies each of the r- and c-opsins in Oplophorus and Systellaspis, and one copy
of each in Benthesicymus.

 Full-length mRNAs were made into cDNA using the Clonetech SMARTer kit and
normalized to trim high copy genes expressed in these tissues.

 BLAST results suggest some sequences matched exclusively blue-green, while others match a
mixture of blue-green and UV-like opsins. The sequences that match a mixture of blue-green
and UV-like eye pigments may represent opsins that detect in the shorter wavelength end of
the blue spectra, detecting near-UV light emitted from photophores.

Samples were submitted to the Brigham Young University next-generation sequencing
center for purification, emPCR, and pyrosequencing on a 454 platform (Figure 3).

* Visual target genes were isolated from transcriptome
data using the transcriptome annotation pipeline
Phylogenetical Informed Annotation (PIA) of the Light
Interaction Tool Kit (LIT) (developed by the Oakley Lab
at UC Santa Barbara).

It is possible that species such as S. debilis, which posses both bioluminescent spew and
photophores, have two types of eye pigments that are able to detect and distinguish between
blue-green and near-UV light of their respective bioluminescent mechanisms.

* In the future, we would like to characterize other visual genes within Oplophoridae and link
them to visual function.

 Comparisons were made to genes reported in
GenBank using BLAST (http:// www.ncbi.nlm.nih.gov/
BLAST/).

* Future studies may include an expansion of this transcriptomic approach to include other
caridean shrimp outside of the family Oplophoridae.
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Figure 3. 454 pyrosequencing
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