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Abstract A major goal of evolutionary biology is to

understand the role of adaptive processes on sensory

systems. Visual capabilities are strongly influenced by

environmental and ecological conditions, and the

evolutionary advantages of vision are manifest by its

complexity and ubiquity throughout Metazoa. Crus-

taceans occupy a vast array of habitats and ecological

niches, and are thus ideal taxa to investigate the

evolution of visual systems. A comparative approach

is taken here for efficient identification and classifica-

tion of opsin genes, photoreceptive pigment proteins

involved in color vision, focusing on two crustacean

model organisms: Hyalella azteca andDaphnia pulex.

Transcriptomes of both species were assembled de

novo to elucidate the diversity and function of

expressed opsins within a robust phylogenetic context.

For this purpose, we developed a modified version of

the Phylogenetically Informed Annotation tool’s

pipeline to filter and identify visual genes from

transcriptomes in a scalable and efficient manner. In

addition, reference genomes of these species were

used to validate our pipeline while characterizing the

genomic architecture of the opsin genes. Next-gener-

ation sequencing and phylogenetics provide future

venues for the study of sensory systems, adaptation,

and evolution in model and nonmodel organisms.

Keywords Evolution � Phototransduction � Protein �
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Introduction

Opsins are photoreceptor molecules that play a crucial

role in animal vision and can be found across

metazoans (Terakita, 2005). As membrane-associated,

G-protein-coupled receptors (GPCRs), opsins can

function in both visual and nonvisual phototransduc-

tion, and in some instances as photoisomerases

(Shichida &Matsuyama, 2009). Previous studies have

classified opsins in three primary categories according

to the type of G-protein to which they couple namely,

‘‘ciliary’’ (c-opsins), ‘‘rhabdomeric’’ (r-opsins), and

RGR/Go opsins (Terakita, 2005; Feuda et al., 2014,
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2016). Ciliary and rhabdomeric opsins diversified

prior to the protostome-deuterostome split and are

found in both invertebrates and vertebrates, which

suggests that they co-occurred in a common ancestor

(Kojima et al., 1997; Shichida & Matsuyama, 2009;

Hering & Mayer, 2014; Ramirez et al., 2016). Opsin

categories can additionally be further subdivided into

subfamilies based on molecular phylogenetics and

functional classifications (Terakita, 2005). These

subfamilies share less than 20 percent amino acid

identity (Fryxel & Meyerowitz, 1991) and comprise

c-opsins (visual and nonvisual); tmt/encephalopsins;

r-opsins; melanopsins; and photoisomerases/neu-

ropsins. Photoreceptive opsins can be of either the

ciliary-type, found largely in vertebrates (for excep-

tions see Arendt et al., 2004; Passamaneck et al., 2011;

Bok et al., 2017; Tsukamoto et al., 2017), or the

rhabdomeric-type found in mollusks, annelids, and the

compound eyes of arthropods (Arendt et al., 2002;

Shichida & Matsuyama, 2009; Gühmann et al., 2015),

with the last being the focus of the present study.

Opsins form visual pigments capable of absorbing

photons when bound to a chromophore, generally a

vitamin A1 derivative (11-cis retinal). These visual

pigments trigger conformational changes that activate

G-proteins (Nathans, 1987) and elicit phototransduc-

tion signaling cascades. Key biological processes such

as the regulation of circadian clocks, phototaxis, and

vision have been shown to be linked to the photo-

transduction cascade (e.g., Arendt et al., 2004; review

Shichida & Matsuyama, 2009). The set of amino acid

residues that interact with the chromophore produce

an environment suitable for the absorption of light

with distinct wavelengths (Imai et al., 1997;

Kuwayama et al., 2002) and thus influence spectral

tuning (e.g., Porter et al., 2007; Katti et al., 2010). As

the absorption spectrum of the photopigment is

influenced by the amino acid composition of the opsin

protein, slight variations can alter its physical and

chemical properties and lead to visual pigments

maximally sensitive to different wavelengths of light.

This in turn would allow organisms to perceive and

distinguish between lights of particular wavelengths.

The direct association between amino acid composi-

tion of photoreceptive opsins and their spectral

sensitivity make them amenable to functional classi-

fication by sequence analysis (Mirzadegan et al., 2003;

Matsumoto & Ishibashi, 2016).

Three main approaches have been employed to

characterize opsins from transcriptomic data: (I) Se-

quence similarity searches via pairwise alignments

(i.e., BLAST); (II) Protein structure prediction

through Hidden Markov Model (HMM) profile align-

ments; and (III) Phylogenetic inference. Functional

annotation by means of sequence similarity is typi-

cally based on heuristic algorithms that search for

matching nucleotide and/or amino acid sequences in

curated databases (e.g., BLAST; Altschul et al., 1990).

Sequences are locally or globally aligned and subse-

quently annotated based on inferred homology with

statistically significant matches (Pearson, 2013).

These comparisons, however, can rapidly become

computationally expensive as the number of query

and/or reference sequences increases (Suzuki et al.,

2012). Although similarity searches via pairwise

alignments are capable of identifying homologous

sequences, their shortcomings are notorious when the

queries consist of protein families with low sequence

similarities, as is the case for opsins and other GPCRs

(Pearson, 2013). Hidden Markov Model (HMM)

methods offer an enticing alternative to pairwise

alignments at similar computational costs (Eddy,

2011; Pearson, 2013). HMM profiles can also contain

relevant information regarding protein structure,

which translates to more accurate identification,

classification, and annotation of proteins even when

overall sequence similarity is low (Krogh et al., 1994;

Yoon, 2009; Pearson, 2013). However, the efficacy of

HMMs is intrinsically dependent on the quality of the

training data, which is a nontrivial process in the case

of understudied taxa or protein families (Rasmussen &

Krink, 2003; Pearson, 2013). Therefore, the use of

HMMs for annotation of GPCRs is hindered when

independently verified sequences are not readily

available. The robustness and suitability of phyloge-

netic approaches for functional annotation of opsins

(and other proteins) is unparalleled, as it can readily

overcomemany of the deficiencies of other homology-

based methodologies (Engelhardt et al., 2009; Gaudet

et al., 2011; Speiser et al., 2014). The placement of

proteins on a phylogenetic tree not only enables a rapid

assessment of homology and efficient discrimination

of false positives, but also allows for the inference of

putative functions and roles within an evolutionary

context (Engelhardt et al., 2009). This approach has

been successful in classifying novel opsins (and other

GPCRs) despite their characteristic low sequence
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similarities and, in the case of nonmodel organisms,

scarce genomic resources (Porter et al., 2007, 2012;

Speiser et al., 2014). The main drawbacks of phylo-

genetic reconstruction as an efficient functional anno-

tation method are possible difficulties aligning

distantly related sequences, its propensity to be time-

consuming (obtaining adequate references, computa-

tion of trees, etc.) and the steep learning curve to

master these analyses, which might result in subjec-

tivity and misinterpretations (Crisp & Cook, 2005).

Efforts to characterize opsins from high-throughput

sequencing data in nonmodel Crustacea have primar-

ily focused on transcriptomes, but without genomic

validation (Porter et al., 2013; Wong et al., 2015;

Biscontin et al., 2016). When available, genomes can

provide valuable information regarding opsin gene

duplication in an organism, as well as the relative

locations of those genes. Gene locations allow for

intra- and interspecific comparisons (Nordström et al.,

2004) and to make inferences about the evolutionary

history of opsin diversification (review Shichida &

Matsuyama, 2009).

In this study, we modified the Phylogenetically

Informed Annotation (PIA) tool’s pipeline (Speiser

et al., 2014) to conduct a robust and scalable

phylogenetic annotation of visual opsins from tran-

scriptomes of two crustacean model organisms,

Hyalella azteca (Saussure, 1858) and Daphnia pulex

Leydig, 1860. Hyalella azteca is a freshwater epiben-

thic amphipod, commonly used as a bioindicator

species, which has one pair of pigmented compound

eyes (Gonzalez & Watling, 2002). Daphnia pulex is a

freshwater cladoceran that has a single but movable

cyclopean, compound, and pigmented eye. Specifi-

cally, we made modifications for PIA to run on the

command-line rather than on Galaxy’s GUI and wrote

wrapper scripts to facilitate the analyses. This resulted

in a scalable and automated platform to annotate

visual genes and pathways, while minimizing possible

biases and subjectivity from manual curation. As

genomes are available for both species, they were used

to validate the annotations and make inferences about

the genomic architecture and the opsin intron–exon

gene structure within these species.

Methods

Data, quality control, and transcriptome assembly

Raw RNA sequencing data of the freshwater amphi-

pod H. azteca and the model branchiopod D. pulex

were downloaded from the NCBI’s Sequence Read

Archive (SRA). In order to facilitate de novo tran-

scriptome assembly and accurate detection of com-

plete opsin isoforms, the read files were trimmed

taking into consideration factors such as length and

quality of the sequencing reads, sequencing depth, and

tissue type (Table 1).

Prior to the assembly process, quality of the raw

sequencing reads was evaluated via FastQC (Andrews,

2010). The FastQC output was subsequently used to

inform stringent quality and adaptor trimming with

Trimmomatic 0.36 (parameters: ‘‘ILLUMINACLIP:-

TruSeq 3-PE.fa:2:30:10 CROP:140 HEADCROP:20

LEADING:15 TRAILING:15 SLIDINGWIN-

DOW:4:20 MINLEN:36’’; Bolger et al., 2014). Clean

sequencing reads were then assembled into a de novo

transcriptome with the Trinity pipeline (version 2.5.0;

Grabherr et al., 2011; Haas et al., 2013) using default

parameters, a minimum contig length of 200 bp, and a

kmer size of 23. Assembly summary statistics were

calculated using Transrate 1.0.3 (Smith-Unna et al.,

2016). BUSCO 3.0.2 (Benchmarking Universal Sin-

gle-Copy Orthologs; Simão et al., 2015) was

employed to assess the quality and completeness of

the resulting transcriptomes. The latter method pro-

vides an accurate evaluation of transcriptomes in an

evolutionary informed context by assessing the pres-

ence and completeness of universal single-copy

orthologs (Simão et al., 2015). BUSCO analyses were

conducted with the Arthropoda database of ortholo-

gous groups (n = 1066) sourced from OrthoDB

(Waterhouse et al., 2013).

Identification and annotation of crustacean opsins

Identification and functional classification of putative

opsin transcripts was achieved through the use of our

modified version of the existing PIA tool (Speiser

et al., 2014). While phylogenetic confirmation of

BLAST similarity hits is becoming routine in model

systems, PIA allows for the identification of proteins

involved in visual pathways for nonmodel organisms

in a computationally efficient manner (Speiser et al.,
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2014). This informative tool places putative visual

gene transcripts (e.g., opsins), previously identified via

BLAST searches against a custom database, in

precomputed phylogenies of such genes. The resulting

phylogenies can then be used to discriminate BLAST

false positives and/or paralogous sequences from the

transcripts of interest. While PIA has been used in

previous studies to annotate genes in a phylogenetic

context, it was originally designed as a workflow for

the Galaxy Project (Afgan et al., 2016) and as such is

dependent on a Graphical User Interface (Speiser

et al., 2014). This workflow can become inefficient

when conducting concurrent analyses of numerous

transcriptomes. Further, curation of the phylogenetic

gene trees produced by PIA for each input transcrip-

tome is typically undertaken manually, which inevi-

tably makes it sensitive to potential biases. Tree

branch length cutoff values for a given gene (i.e.,

opsins) can, however, be determined empirically

through a series of manual tree curation comparisons.

The pipeline presented here is a modification to PIA’s

pipeline in which the authors wrote a wrapper script to

enable its use as a command-line/automated work-

flow, which effectively increases its scalability allow-

ing for the identification of visual opsins frommultiple

transcriptomic datasets through simple scripting.

Although the pipeline was designed for analyses of

visual pathways, it is possible to create custom

databases and phylogenies for other genes/pathways.

We refer the reader to the original publication of PIA

for additional information regarding included genes

and pathways (Speiser et al., 2014). The modified

Phylogenetically Informed Annotation pipeline

employed in this study, along with usage examples,

will be made available at: https://github.com/

xibalbanus/PIA2.

Once the transcriptome assembly was completed,

our de novo assemblies were scanned with Biopy-

thon’s get_orfs_cds.py script (Cock et al., 2009) to

translate each transcript into its corresponding amino

acid sequence. Open Reading Frames (ORFs) were

then extracted via the same script to facilitate the PIA

annotation process. After conclusion of PIA’s main

component (BLAST, MAFFT alignment, and phylo-

genetic placement via RAxML; Altschul et al., 1990;

Stamatakis, 2014; Yamada et al., 2016), a script

adapted from the Osiris Phylogenetics toolkit (long_-

branch_finder.py; Oakley et al., 2014) was used to

identify transcripts that exceeded 4 9 the Mean

Absolute Deviation of the tree’s branch lengths. This

simple threshold proved effective at removing spuri-

ous BLAST hits in an unbiased manner. Subsequently,

the previously identified false positives were pruned

from our phytab-formatted hit-list (part of PIA’s

output) with the prune_phytab_using_list.py script,

also adapted from Osiris (Oakley et al., 2014). The

resulting list of putative opsins was then converted to

FASTA format, and sequence redundancy was

reduced by removing identical protein sequences with

UCLUST (Edgar, 2010). The multiple sequence

aligner MAFFT (Yamada et al., 2016) was then

invoked to align our filtered putative opsins to a large

opsin dataset (n = 910) compiled by the Porter Lab

(University of Hawaii at Manoa), which includes

representatives of the main opsin subfamilies. MAFFT

alignment parameters were chosen to prioritize accu-

racy over speed and to allow for large unalignable

regions that can be pervasive with divergent GPCRs

(‘‘–ep 0 –genafpair –maxiterate 1000’’). Following the

alignment procedure, a final phylogenetic reconstruc-

tion was undertaken with IQ-tree (Nguyen et al., 2015)

for characterization and annotation of our PIA-iden-

tified putative opsins. IQ-tree compares favorably to

alternatives (e.g., RAxML, FastTree, etc.) in recent

benchmarks (Zhou et al., 2017), while also providing a

more extensive choice of evolutionary models for

phylogenetic inference. After proper consideration,

IQ-tree was selected given that evolutionary model

choice is important, and its choice would be limited in

alternative software. Choosing an appropriate model is

Table 1 Raw data chosen for de novo transcriptome assembly and annotation of opsin proteins in Hyalella azteca and Daphnia

pulex

Species Megabytes Megabases Read lengths Sequencing platform Tissue type SRA BioProject

Hyalella azteca 15,543 33,160 2 9 150 bp Illumina HiSeq Whole organism PRJNA312414

Daphnia pulex 16,134 39,280 PRJNA380400
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especially relevant when inferring phylogenetic rela-

tionships in protein families with both highly con-

served domains and hypervariable regions (e.g.,

opsins). The IQ-tree analysis was run with a LG

general amino acid replacement matrix under a

FreeRate model with 10 rate categories and empirical

base frequencies (LG ? R10 ? F; Le & Gascuel,

2008; Soubrier et al., 2012) as suggested byModelFin-

der (Kalyaanamoorthy et al., 2017). Branch support

was assessed in tripartite by Ultra-fast bootstrap

approximation (UFBoot; 10,000 replicates), a Shi-

modaira–Hasegawa–like approximate likelihood ratio

test (SH-aLRT; 10,000 replicates), and an approxi-

mate Bayes test (Guindon et al., 2010; Anisimova

et al., 2011; Minh et al., 2013).

Finally, the tool HHBlits ‘HMM-HMM–based

lightning-fast iterative sequence search’ (Remmert

et al., 2012) was used to confirm opsin identity based

on profile HMMs using Uniclust30 (Mirdita et al.,

2017) as the reference database. HHBlits was chosen

as it incorporates highly sensitive sequence search

methods (HMMs) in a fast, and more accurate manner

compared to other sequence search tools like PSI-

BLAST (Remmert et al., 2012).

Genomic Architecture of Annotated Opsins

Proteins encoded in the transcriptomes analyzed may

not have corresponding annotations in public data-

bases. Therefore, to validate our pipeline, the exon–

intron architecture of the opsin genes obtained from

transcriptomic data (see above) was annotated de novo

using the recently assembled genomes of H. azteca

(GCA_000764305.2; accession date: 20-07-2017) and

D. pulex (GCA_000187875.1; accessed on 20-07-

2017). The Benchmarking set of Universal Single-

Copy Orthologs (BUSCO version 3; Simão et al.,

2015) was used to ensure an adequate completeness of

the genomes used for transcriptome/genome compar-

ison. BUSCO provides quantitative measures for the

assessment of genome assembly based on evolution-

arily informed expectations of gene content from near-

universal single-copy orthologs selected from

OrthoDB v9. The tblastn algorithm v2.2.29 ? was

then used with default parameters in order to discrim-

inate between exonic and intronic regions along the

genomic scaffolds. When a significant blast hit was

found (similarity[ 80%; e value\ 10-8), the corre-

sponding genomic region was annotated as exonic, or

protein coding/expressed region. DNA regions located

between two consecutive exons in the same genomic

scaffold (chromosome) but with no corresponding

counterpart in the expressed RNA were considered as

introns. In addition, the nucleotide coding sequence of

each putative opsin was mapped to their respective

genomes using the spliced aligner HISAT2 (Kim et al.,

2010). The mapping was done without penalties for

noncanonical splicing using the following command

and arguments: ‘‘hisat2 -f -x index input.cds.fasta –

score-min L,0,-4 –pen-noncansplice 3 -S output.sam’’.

Plots of the gene architecture and the exon length

distribution were subsequently completed using the

Integrated Genome Browser (Freese et al., 2016) and

the software package Mathematica v.11.1 (Wolfram

Inc., USA).

Results

Hyalella azteca’s transcriptome assembly recovered

243,398 contigs with a mean sequence length of

1033.04 base pairs (Table 2). Of these, 61,401

sequences contained Open Reading Frames (ORFs)

designating them as putative protein-coding genes.

Similarly, our de novo transcriptome for D. pulex was

comprised of 187,310 contigs with a mean sequence

length of 848.76, and 38,157 sequences with ORFs.

Additional metrics for our de novo transcriptomes, as

well as for the reference genomes, are given in

Table 2.

Completeness assessment of our de novo tran-

scriptomes by Benchmarking Universal Single-Copy

Orthologs (BUSCO) was favorable for both species.

In H. azteca, we were able to find 990 (92.48%)

complete sequences of the 1,066 arthropod genes

used for benchmarking. An additional 49 (4.6%)

were also present as fragmented sequences, and only

27 (2.6%) were not found. Similarly, D. pulex’s

transcriptome was found to be nearly complete with

1,048 (98.4%) full-length BUSCO genes, 16 (1.5%)

fragmented, and a marginal 2 (0.1%) missing. The

reference genomes selected for validation were rather

complete as well, with over 90% of the BUSCO

genes being found complete. Interestingly, the pro-

portion of missing BUSCOs was slightly higher for

the genomic data compared to the transcriptomic data

(Table 3).
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Our custom version of the PIA tool’s pipeline

outputs a single FASTA file of amino acid sequences

per transcriptome. This file contains the transcripts

that remain after the removal of spurious BLAST hits

and the merging/removal of duplicated and frag-

mented sequences, and should only contain those that

are closely related to the gene of interest (i.e., opsins).

This output can then be piped to a final step for

functional annotation by phylogenetic inference. In

our case, putative opsin sequences for both species

were aligned to a curated dataset of different opsin

types. This final step resulted in a large phylogeny

(Fig. 1) where opsins are classified based on their

phylogenetic position.

Following Trinity’s definition of assembled genes/

isoforms, our pipeline identified 1 SWS/UV opsin (2

isoforms), 3 LWS opsins (3 isoforms), and 1 opsin-like

GPCR as an outgroup (Fig. 2; Table 4) in H. azteca’s

transcriptome. On the other hand, D. pulex’s tran-

scriptome contained 2 different SWS opsins (4 iso-

forms), 6 LWS opsins (35 isoforms), 2 melanopsins (4

isoforms), and 1 opsin-like transcript that was placed

within the outgroup clade (Fig. 2; Table 4).

The identity results of the HHBlits search using

iterative pairwise alignments and profile HHMs are

summarized in Table 5, along with the inferred

classification of each putative opsin transcript based

on their respective placement in the phylogeny

(Figs. 1, 2). In addition, each sequence entry was

annotated as visual or nonvisual based on the sequence

homology inferred by both methods (represented by a

black box when both methods are in agreement; and a

Table 2 Summary statistics for the de novo transcriptome assemblies produced as part of this study and the corresponding genome

assemblies

Hyalella azteca Daphnia pulex

Metric Genome Transcriptome Genome Transcriptome

Number of sequences/contigs 23,426 243,398 18,989 187,310

Longest sequence/contig (bp) 2,207,822 16,780 528,830 27,096

Number of bases 550,886,000 251,440,760 197,206,000 158,981,525

Mean transcript/contig length (bp) 23,404 1,033.04 8,352 848.76

Number of transcripts/contigs[ 1000 bp long 14,563 73,869 16,743 42,717

Number of transcripts/contigs[ 10000 bp long 7,614 157 2,854 179

Number of transcripts with ORFs 61,401 38,157

Mean ORF percent 45.73 50.22

N50 114,415 1,929 49,250 1,404

N30 3,213 2,588

N10 5,560 5,122

GC content 0.38 0.42 0.40 0.39

Table 3 Results of transcriptome completeness assessment by Benchmarking Universal Single-Copy Orthologs (BUSCO) using

OrthoDB’s Arthropoda database of orthologous genes

Species Dataset Complete BUSCOs Fragmented BUSCOs Missing BUSCOs Total BUSCOs Searched

Hyalella azteca Genome 970 (91.0%) 29 (2.7%) 67 (6.3%) 1,066

Transcriptome 990 (92.8%) 49 (4.6%) 27 (2.6%)

Daphnia pulex Genome 1,038 (97.3%) 9 (0.8%) 19 (1.9%)

Transcriptome 1,048 (98.4%) 16 (1.5%) 2 (0.1%)
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gray box when HMMs fail to identify them as a visual

opsin; Table 5).

Genomic structure of annotated opsins

Every protein sequence predicted using the modified

PIA pipeline gave at least one significant TBLASTN

hit both in the D. pulex and H. azteca reference

genomes. The observed distribution of introns within

opsin genes appears to be variable both within and

between genomes. To illustrate this variation, the

Intron–Exon gene structure patterns of representative

opsins were further characterized. The genomic region

encoding for the SWS/UV opsin gene spanned about

4 kb in Hyalella and presented an extremely parti-

tioned structure formed by at least seven different

exons (Fig. 3). Interestingly, some LWS opsins within

the H. azteca genome were located on the antisense

strand and appear to be duplicated retrogenes (Fig. 3;

see Discussion). Both SWS/UV and LWS opsins were

also arranged following disparate gene architectures in

the D. pulex genome (Fig. 4). LWS opsins presented

slightly shorter introns on average than SWS/UV

opsins, but the presence of gene duplications and

genes with numerous introns were identified in most

cases. Exon size distribution had similar shapes in both

D. pulex and H. azteca, being multimodal for both

genomes (Fig. 5). Nevertheless, H. azteca had a larger

average exon size (Mean 410 bp;Median 235 bp) than

D. pulex (Mean 225 bp; Median 164). Mapping results

in SAM format are available for download from the

following repository: https://github.com/xibalbanus/

PIA2.

Discussion

Our results demonstrate the power of incorporating

phylogenetic annotation toward the characterization

and interpretation of large transcriptomic datasets of

nonmodel organisms. Annotations via simple

sequence similarity based methods like BLAST alone

can result in false positives including, but not limited

to, functional diversification following gene duplica-

tion events, domain shuffling, or even existing

database errors (review Sjölander, 2004). Using the

modified version of PIA allowed for the rapid and

automated identification of false positives among the

putative visual opsins curated for the two species of

crustaceans,H. azteca andD. pulex. The modified PIA

pipeline was able to successfully identify and filter

opsins from the de novo transcriptomes in a fully

automated manner with minimal manual curation.

This automation is made possible mainly by the

modifications and wrapper scripts that converted PIA

from a Galaxy workflow to a command-line one,

which effectively increases the scalability of the

pipeline allowing for the identification of opsins (and

Fig. 1 Maximum-

Likelihood phylogeny of

opsins estimated using

putative opsin proteins

identified by our annotation

pipeline from the de novo

transcriptome assemblies of

Hyalella azteca and

Daphnia pulex, along with a

dataset of reference opsin

sequences. Clades are

annotated with opsin types

contained therein and, in the

case of visual opsins, with

their inferred spectral

sensitivities
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other genes) from multiple transcriptomic datasets

through simple scripting. Theoretically, this would

allow for the annotation of dozens, if not hundreds, of

transcriptomes at a time without the need of the

excessive time-costs that a graphical user interface and

manual curation of hundreds of phylogenetic trees

would imply. Further improvements are certainly

possible, particularly in terms of parallelization for its

use in High Performance Computing environments for

even greater computing speeds. Nevertheless, the

current pipeline is dependent on its individual com-

ponents and would thus require those to be made

compatible with parallelization beforehand.

The initial hits recovered by a BLAST search using

the original PIA opsin dataset recovered 11 putative

opsin isoforms for H. azteca and 51 for D. pulex. Our

pipeline removed 54.5% and 23.5% of those as

spurious hits (Table 4) based on the chosen branch

length thresholds. These thresholds can easily be

adjusted for increased/decreased conservativeness if

deemed necessary, which should be assessed on a

gene-to-gene basis. The final phylogenetic inference

took this a step further by classifying these opsins in

statistically supported functional clades (Figs. 1, 2),

which allowed for the determination of their putative

photoreceptive roles. Both H. azteca and D. pulex

transcriptomes were generated from whole organism

RNA extractions. As opsins are known to function in

various cells and tissues of arthropods, as well as the

retina (e.g., Lampel et al., 2005), it is likely that the

opsin groups identified here are expressed across

several tissue types. Nonvisual opsins can be readily

identified via phylogenetic inference provided that

appropriate reference sequences are included in the

multiple sequence alignments. HMM alignments were

also used as a secondary source of evidence to confirm

protein identities as well as to compare with the results

of the phylogenetic annotation. HHMs were able to

pair most putative visual opsins to the lateral com-

pound eye opsins of arthropods for both species and, in

the case of D. pulex, specifically to Daphnia class A

rhodopsins. While there were a few discrepancies

among annotation methods with regard to visual

opsins (r-opsins) and melanopsins, this could be

explained by their common origin (Porter et al.,

2012). Melanopsins are very similar to the r-opsins

found in invertebrates (Provencio et al., 1998, 2000)

and can couple to similar signaling cascades (Isoldi

et al., 2005; Panda et al., 2005; Qiu et al., 2005). In

fact, the similarities between these opsin types are

evident in our phylogenetic trees (Figs. 1, 2), showing

a well-supported clade of arthropod UV opsins nested

within the melanopsin clade. Partial sequences or

existing database errors could also be a contributing

factor to which BLAST and HMM approaches are

more sensitive. Even though the HMM searches were

not able to determine the functional classification of

the opsins in terms of spectral sensitivity, they were

confirmed as visual opsins (Table 5). Our results

further support the notion that integrated annotation

methods are advantageous and recommended to

confirm the robustness of findings and annotations.

Opsin repertoire and spectral sensitivities

There are several subgroups of rhabdomeric visual

opsins responsible for vision in crustaceans, each with

characteristic absorption spectra when bound to a

Table 4 Number of genes and respective isoforms, as defined by Trinity, recovered for each type of opsin in Hyalella azteca and

Daphnia pulex

Species Short-wavelength

sensitive/UV

Long-wavelength-

sensitive

Peropsins/Neuropsins/

Encephalopsins

Melanopsins Opsin-like transcripts

(Outgroups)

Genes Isoforms Genes Isoforms Genes Isoforms Genes Isoforms Genes Isoforms

Hyalella azteca 1 2 3 3 0 0 0 0 1 1

Daphnia pulex 5 15 3 24 0 0 2 4 1 1

bFig. 2 Expanded view of the melanopsin, Arthropod LWS, and

Arthropod SWS/UV clades. Large noncrustacean clades have

been collapsed for readability. Support values correspond to SH-

aLRT/aBayes/UFBoot, and are not shown when UFBoot

support\ 75. Splits are considered highly supported

when SH-aLRT[= 80%, aBayes = 0.95, and UFboot = 95%
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chromophore (Kashiyama et al., 2009; Henze &

Oakley, 2015). The number and type of opsins found

throughout Crustacea can range greatly, partially

owing to differences in methodologies—with no

homologs found in freshwater Bathynellacea (Kim

et al., 2017), one or two SWS visual opsins found in

species of deep-sea shrimp (Wong et al., 2015) and

brachyuran crabs (Sakamoto et al., 1996), and as many

as 33 identified in stomatopods (Porter et al.,

2009, 2013). The number of opsins and corresponding

spectral sensitivity of an organism appear to correlate

with its life-history, habitat, and the ecological niche it

may occupy (Marshall et al., 2015; Stieb et al., 2017).

This study represents the first transcriptomic explo-

ration of H. azteca’s opsin repertoire, which revealed

several putative visual opsins (Fig. 2; Table 4).

Hyalella azteca is a freshwater epibenthic amphipod

commonly used as a bioindicator species. Though

further evidence is required to make inferences

regarding the expression and functionality of these

putative opsins, the ability to differentiate between

short and long wavelengths would allow H. azteca to

discern between direct and reflected light from the

benthos. Direct sunlight (or moonlight) tends to be

abundant in short-wavelengths (\ 450 nm) whereas

reflected light from sources like leaves and sediment

tends to be shifted toward longer ([ 450 nm) wave-

lengths (Menzel, 1979). Our analyses revealed four

distinct opsin genes (one SWS/UV and three LWS)

expressed in its transcriptome, and suggests that H.

azteca may be capable of discriminating between the

aforementioned light sources. The authors hypothe-

size that if H. azteca does possess functional SWS and

LWS visual opsins, this distinction could serve as an

important environmental cue influencing their

response to a variety of abiotic and biotic factors

(e.g., refugia, vegetation, predators, prey). However,

the authors note that additional studies incorporating

electroretinographic analyses are needed to confirm if

H. azteca can indeed discriminate between different

wavelengths of light as the transcriptomic data sug-

gests. Fewer opsins were found to be expressed in H.

Fig. 3 Intron–Exon gene structure patterns of representativeHyalella azteca SWS/UV and LWS opsins. A SAM alignment file with all

of the mapped transcripts is provided in the GitHub respository: https://github.com/xibalbanus/PIA2
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azteca compared to D. pulex, which is not surprising

given the expansive opsin repertoire previously

described for Daphnia (Colbourne et al., 2011;

Brandon et al., 2017). Daphnia has both simple and

compound eyes, whichmay contribute to the relatively

large number of opsin isoforms expressed. Differences

have been found in the number and type of opsin genes

expressed among eye forms within the ostracod

Skogsberia lerneri (Oakley & Huber, 2004) and

similarly hypothesized for Daphnia (Brandon et al.,

2017).

The subset of identified rhabdomeric opsins

expressed in the D. pulex transcriptome allows for

comparisons to prior studies characterizing the range

of opsin types found in the D. pulex genome

(Colbourne et al., 2011; Brandon et al. 2017).

Colbourne et al. (2011) reported 25 medium- (MWS)

and long-wavelength-sensitive (LWS) opsin genes as

present in the D. pulex genome, but only 3 LWS opsin

genes (and 24 isoforms) were identified in our

Fig. 4 Intron–Exon gene structure patterns of representative

Daphnia pulex opsins SWS/UV and LWS opsins, which are

arranged in the genome in distinct patterns according to opsin

type. A SAM alignment file with all of the mapped transcripts is

provided in the GitHub respository: https://github.com/

xibalbanus/PIA2

Fig. 5 Exon size distribution for both Daphnia pulex and

Hyalella azteca. X-axis is in base pair units (bp), while Y-axis

represents proportion of transcripts in said range
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analyses. While it is possible that the additional opsin

classes identified in previous genomic investigations

were not expressed in the current D. pulex dataset, it is

also possible these discrepancies are due to differences

in classification schemes across Arthropoda, with

‘blue-green’ wavelengths currently grouped under

SWS. An alternative explanation is that separate genes

are being considered isoforms of each other by Trinity

during the de novo assembly process. Considering the

large number of ‘‘isoforms’’ and low number of

‘‘genes’’ identified in the D. pulex transcriptome, in

contrast with previous genomic investigations (e.g.,

Brandon et al., 2017), this is likely a contributing

factor to this observed discrepancy.

Genomic architecture and opsin gene duplications

Gene duplications play a fundamental role in genome

evolution (Ohno, 1970; Kondrashov et al., 2002), with

replicates occasionally evolving new biological func-

tions (Zhang, 2003; Pegueroles et al., 2013). Some of

these genome duplications may result in pseudogenes,

loci whose nucleotide sequences are similar to a

normal gene but that do not produce a functional

product when translated. The ‘‘unprocessed’’ pseudo-

genes, can have all the normal parts of a protein-

coding gene, but generally are nonfunctional due to

coding errors (Lynch & Force, 1999). Occasion-

ally, so-called ‘‘processed’’ pseudogenes lack the

noncoding introns present in the original gene, and

are thought to arise from mRNA reinserted into the

genome by reverse transcription (Betrán & Long,

2002). Some of these ‘‘retrogenes’’ have been found to

be actively transcribed, and the RNA product can be

further processed to give two different molecules of

RNA of smaller size that form elaborate secondary

structures. These RNA regulatory molecules can

control a variety of key genes involved in the

regulation of the cell cycle and in cell growth (Tutar,

2012; Wen et al., 2012). Opsin genes with few or no

introns, such as the LWS opsins our analyses identified

in H. azteca (Fig. 3), have evolved in various meta-

zoans (including crustaceans) and are thought to be

functional photoproteins (Morris et al., 1993; Fitzgib-

bon et al., 1995; Porter et al., 2007; Liegertová et al.,

2015), although it has been postulated that the

expression of retrotransposed opsins is a form of

transcriptional noise and a byproduct of transcrip-

tional activity in the new genomic region (Xu et al.,

2016). Opsin diversification and photopigment evolu-

tion seems to have been driven by duplicated opsin

genes (e.g., Frentiu et al., 2007; Briscoe et al., 2010),

as is the case of both ocular and extraocular cnidarian

photoreceptors (Liegertová et al., 2015). Likewise, a

functional LWS retrogene was recently found in the

arthropod Helicoverpa armigera, although expression

was believed to be under temporal compartmentaliza-

tion and primarily expressed in larval stages (Xu et al.,

2016). Our results provide further evidence supporting

the importance of retrogenes in the evolution of the

opsin gene family.

Concluding remarks

Our results support the use of integrative phylogenetic

annotation in place of exclusively similarity-based

approaches. This is an often overlooked but especially

important consideration for the study of protein

families (e.g., GPCRs) known for having large num-

bers of isoforms, multiple duplication events, low

sequence similarities, and various combinations of

highly conserved domains with hypervariable regions.

Phylogenetic approaches are not only able to robustly

evaluate homology in an evolutionary context, but

they can also provide valuable functional information

based on recovered branching patterns. In the case of

opsins, this functional information can be insightful

from a variety of perspectives, and aid in the formu-

lation and testing of organismal, ecological, and

evolutionary hypotheses. Many of these will be put

to the test in the present and forthcoming genomic era,

for which efficient and scalable methodologies and

pipelines will be paramount.
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